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Mexico

2 Centro de Investigación en Matemáticas A.C.,
Mexico

3 Consejo Nacional de Humanidades, Ciencias y Tecnologı́as,
Mexico

{danielmtz, luismvc, sebastian.salazar, cparedes}@cio.mx, israelb@cimat.mx

Abstract. Autonomous vehicles depend on accurate
and efficient environment representations such as
semantically segmented Bird’s Eye View (BEV) for
path planning and decision-making to achieve safe
navigation. Implementing deep learning techniques to
generate front-view to bird’s-eye view transformations
with depth information and RGB images is often
complex due to the absence of real-world BEV datasets
for training. Additionally, model’s performance is often
affected by the semantic class imbalance of the BEV
maps at the pixel level. On this study, we propose a
sensor fusion block to integrate RGB and depth features
to improve perspective transformation performance.
Furthermore, we implement a layer-based data
augmentation to address the class imbalance challenge.
Experiments to demonstrate that the proposed sensor
fusion block and the layer based data augmentation
method improve perspective transformation performance
on state of the art deep learning architectures.

Keywords. Sensor fusion, bird’s eye view, perspective
transform, deep learning, autonomous vehicles.

1 Introduction

Efficient and safe autonomous navigation systems
for self-driving cars depend on the careful design
of three key components: perception, planning,
and control. The perception of the environment

is particularly important, as it directly impacts
the effectiveness of the following stages [8].
Nowadays, self-driving cars have access to
a variety of information sources from diverse
sensors, including cameras, which capture rich
semantic information, LiDARs and radars, which
provide accurate spatial information and velocity
estimation respectively [7].

Thus, the environmental perception stage
necessitates of algorithms capable of fusing
data from different sources, creating a unified
view to perform object detection [20], semantic
segmentation [12, 16], tracking [18], predicting
pedestrian intentions [15], among other computer
vision tasks.

At present, deep learning (DL) based methods
are frequently required to effectively implement the
perception stage. These artificial intelligence (AI)
algorithms enable the fusion of sensor data and the
creation of environment representations, thereby
enhancing decision-making accuracy and system
efficiency [17].

In particular, vision-based bird’s eye view
(BEV) techniques are extensively used in
applications like surveillance, urban planning,
and autonomous navigation, providing a valuable
tool for understanding large areas and optimizing
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processes that benefit from a comprehensive
perspective [8].

Li et al. [8] distinguishes three main approaches
to perform front to BEV perspective transformation:

i) BEV Camera, that utilizes single or
multiple camera setups to transform front
perspective to BEV;

ii) BEV LiDAR, which uses point cloud inputs to
perform detection or segmentation tasks, and

iii) BEV Fusion, including any fusion
mechanisms that transform different input sensors
into a unified BEV.

Monocular front camera to BEV perspective
transformation is an interesting approach to the
environmental perception stage, as it tries to
capture both semantic and spatial information from
a single camera.

Several strategies have been proposed for
this task, such as using classic geometric
operations to perform front-to-BEV transformations
based on the camera’s intrinsic and extrinsic
parameters [5, 3]. However, recent advances in
deep learning algorithms have surpassed these
geometric transformation methods [8]. Notable
examples of these advanced techniques include
Generative Adversarial Networks (GANs) [19],
Variational Autoencoders (VAEs) [12], and Vision
Transformer-based architectures [14, 9]. However,
researchers argue that sensor fusion would ideally
improve the perception system’s performance, yet
fusing data from different modalities remains a
challenging problem to solve [8]. In particular, BEV
Fusion strategies focused on fusing camera and
LiDAR features.

For example, Florea et al. [2] developed a
methodology to fuse semantically segmented front
perspective images into point clouds to perform
3D object detection. Liu et al. proposed the
transformer-based architecture BEVFusion [11],
described as an efficient and generic multi-task
multi-sensor fusion framework, and demonstrated
its capabilities to perform tasks such as BEV map
segmentation and 3D object detection.

Another example of a transformer-based sensor
fusion algorithm is the works of Gunn et
al. [4]. These authors proposed a mechanism
to fuse the specific image plane features of

the image into the projected horizon of the
LiDAR features. Regardless of BEV Camera or
BEV Fusion, implementing DL-based front-to-BEV
perspective transformations in autonomous driving
presents various challenges, with one of the
most notable being the accurate generation
of ground truth for model training. While
datasets like Kitty, Cityscapes, Argoverse, and
NuScenes provide labeled sensor data for tasks
such as object detection, lane detection, and
semantic segmentation, they lack ground truth for
perspective transformation [10]. As a result, some
researchers have created or estimated their own
BEV maps from sensor data.

For instance, Roddick and Cipolla [16] developed
an algorithm to integrate and transform features
(such as LiDAR data and object masks from
annotated images) from NuScenes and Argoverse
toolkits to generate 2D BEV representations
for training their pyramid occupancy network.
Conversely, Zhou et al. [19] employed paired
(front-top) images from a video game to train a
GAN-based perspective transformation model.

Another approach to obtaining objective ground
truth for perspective transformation models is
to use simulation tools like Gazebo, Unity, or
Unreal Engine, where every aspect of the driving
environment can be precisely controlled.

In particular, in this work, to ensure an unbiased
comparison, we have built and used our synthetic
dataset, which includes the ground truth from the
generated top-view images. This strategy ensures
a fair evaluation of any network’s performance,
as all are assessed using the same data type.
The only difference in training arises from the
application of data augmentation techniques or
the inclusion of depth information encoded as an
image (more detail in Section 2.1).

In this work, we explore the intricacies of
transforming monocular front camera perspective
images (RGB images) into semantically
segmented bird eye’s view representations.
Additionally, we propose two methodologies
to fuse RGB images and depth information.
Furthermore, to address the issue of limited data,
we have employed a data augmentation approach
utilizing the CARLA open-source simulator for
autonomous vehicles research [1]. The paper
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also discusses experiments on how deep learning
models, data augmentation techniques, and depth
integration methods interact and their impact.

2 Methodology

This section provides an overview of the
description of the data set and the proposed
deep learning-based methodology implemented.

2.1 Dataset

We created a dataset of 6,500 images from 65
scenes across four maps, which were used to
train and test DL-based models. Traffic scenes
encompass a wide range of scenarios, including
challenging cases such as making unprotected
left turns, navigating roundabouts, handling road
curves, and approaching four-way stops, among
others. These scenes also feature diverse scenery,
including various architectural styles and lighting
conditions. The scenes were generated along
specific map routes, with a varying number of
vehicles and pedestrians placed on the roads
and walkways.

A wide range of 3D models were used, differing
in vehicle type, size, and color, as well as
pedestrian appearance, size, and pose. This
diversity is intended to enhance the robustness of
the proposed methodology. Each dataset sample
consists of three images: two front-view images
split into RGB and depth channels, and one
top-view image in semantic format. All images are
uniformly sized at 1024× 1024 pixels. The top-view
images are labeled according to five semantic
classes: non-drivable space, drivable space,
sidewalk, vehicle, and pedestrian. These specific
classes were selected because we believe they
provide a stable detection baseline for navigation.
Fig. 1 illustrates a representative example of the
dataset elements, including the color coding for the
semantic classes.

After labeling the top-view images, a digital
image processing step is systematically performed,
generating the ground truth BEV maps, as
illustrated in Fig. 2. The process begins with
resizing the image, though this step can cause
unwanted effects like vehicle deformation and loss

of pixel information related to pedestrians. To
mitigate these issues, an opening morphological
operation (which involves erosion followed by
dilation) is applied.

2.2 Data Augmentation Layers-based
Approach

We have implemented the layer-based data
augmentation (LbDA) reported in our previous
work [13]. Unlike traditional data augmentation
techniques that generate synthetic data through
various transformations, the layer-based Data
Augmentation (LbDA) selectively includes or
excludes different object layers such as buildings,
pedestrians, and vehicles from traffic scenes. This
process results in a dataset composed of three
distinct types of layers. The first type, named
layers-none, contains only roads. The second
type, layers-all, incorporates static objects such as
buildings, poles, and fences. The third type, traffic,
further adds dynamic objects like pedestrians and
vehicles to the layers-all configuration. This
method is designed to introduce new features
that enhance the performance of front perspective
to bird´s eye view mapping. Examples of the
augmented samples are presented in Fig. 3.

2.2.1 Variational Encoder-Decoder

The Variational Encoder-Decoder (VED) is a
DL architecture that combines the structure of
autoencoders with the variational inference [12].
The VED architecture has two main components:
the encoder and the decoder. The encoder maps
input data into a probabilistic distribution over latent
variables, typically characterized by a mean and
variance. The latent space is a compressed,
lower-dimensional representation where similar
data points are clustered together.

In contrast, the decoder then reconstructs the
original input data from samples drawn from the
latent distribution, aiming to match the original
input closely. Fig. 4a depicts the VED architecture.
In this work, the VED implementation accepts a
256 × 512 × 3 front camera image as input and
generates a 200× 196 semantic map as output.
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(a) RGB image (b) Depth image (c) Semantic masks

Fig. 1. Dataset representative sample. (a) Front perspective view. (b) Depth image of perspective view.
(c) Top segmented map and its class identifier and corresponding color

Fig. 2. Ground truth generation pipeline

(a) (b) (c)

Fig. 3. Layers-based data augmentation examples,
where (a), (b), and (c) show the layers traffic, layers-all,
and layers-none, respectively

2.3 Depth Integration

Transforming monocular front perspective RGB
images to bird eye’s view is one of the
most common methods to create semantic BEV
maps. However, as model’s performance
plateaus due to the architecture’s limitations and
dataset complexity, more advanced deep learning
architectures or additional information is needed to
further improve performance.

For this work, we analyze if depth integration
substantially improves performance of perspective
transformation. Then, we have integrated two
methods for incorporating depth information

into the deep-learning-based perspective
transformation models.

2.3.1 Four-Channel Approach

One of the simplest approaches to include depth
images into monocular front perspective to BEV
deep learning models is to concatenate the depth
image to the RGB image in the channel dimension.
Depth information encoded as an image allows
seamless integration with the Convolutional Neural
Network’s (CNNs) ability to process image-like
data. By representing depth as pixel values, CNNs
may detect spatial patterns and relationships
across the depth map, as has been extensively
demonstrated with standard RGB images.

This capability enables the network to capture
crucial 3D spatial features, such as relative
positioning, which are essential for tasks like
scene understanding, planning, or navigation.
Moreover, depth data might complement the RGB
data by providing geometric cues that improve
the network’s ability to disambiguate objects
with similar visual appearances but different
spatial locations. Encoding depth as an image
also leverages the computational efficiency of
CNNs, avoiding the need for specialized 3D data
processing while enhancing performance in tasks
requiring an understanding of 3D environments.

This approach allows processing an RGB
+ Depth image with almost no architecture
modifications, i.e., it is only needed to change the
input channels (three for RGB and four for RGBD)
of the first layer of the feature extraction backbones
of the models (Fig. 4a).
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(a) Variational Encoder-Decoder’s architecture

(b) VED-Fusion architecture

Fig. 4. (a) VED’s architecture. (b) VED-Fusion architecture

With this approach, the RGB-Depth features are
extracted by the backbone and then processed and
combined through the encoder block of the model’s
architecture.

2.3.2 Sensor Fusion Block

To enhance the variational encoder-decoder’s
performance on perspective transformation, we
propose a sensor fusion block.

The objective of this block is to generate an
augmented latent vector using both RGB and
depth images, with the aim of achieving superior
performance in perspective transformation
compared to approaches reliant solely on
RGB images.

As depicted in Fig. 4b, RGB and depth features
are extracted and then processed in different
encoding heads. RGB and Depth encoder blocks
only differ on the number of input channels

of the feature extraction architecture (one and
three input channels for the depth and color
images, respectively). Encoding heads output
each a 512 one-dimensional vector containing the
representative features of the input images.

Color and depth encoded vectors are then
concatenated and processed by the fusion block.
The structure of the fusion block downsamples and
upsamples the feature vector, allowing the color
and depth perspective view features to interact with
each other, enhancing the encoded representation.

The fusion block is integrated by four
fully-connected layers. The input layer takes
a 1024 1d-vector and further encodes into a 512
1d-vector. Subsequently, the second and third
layers transform the features without changing
the vector dimension, and finally, the output layer
upsamples the vector into a 1024 1d-vector.
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The first three fully-connect layers are followed
by ReLU activation functions, then, dropout
regularization to avoid overfitting. The output
layer of the fusion block is followed by a 1d-batch
normalization. The normalized 1024 1d-vector is
then utilized to calculate the mean and log variance
and compute the latent representation (z), which
is then fed to the decoder block to produce the
semantic BEV map.

2.4 Training

The dataset was divided into three subsets for
the purpose of training and testing the models:
training, validation, and test subsets. The training
set comprises 6,500 images, with 90% designated
for training and 10% reserved for validation. Then,
500 images, representing five scenes from an
entirely different and previously unseen map, were
set aside for testing. The models were trained
for 50 epochs using the Adam optimizer [6],
with the square root of the inverse frequency
cross-entropy (SqrtInvCE) as the loss function, as
defined in Eq. 1:

SqrtInvCE =

√√√√−
C∑

c=1

Nc log(P c). (1)

3 Results and Discussion

The following experiments were conducted by
training the following models with our dataset:
Original VED architecture trained with RGB images
(VED-RGB), a modified version of the VED’s
backbone input channels to extract features
from RGB-Depth images (VED-RGBD), and the
proposed VED modification to fuse RGB and
depth images on separate encoding heads
(VED-Fusion). The results were compared with
the original Pyramid Occupancy Network (PON)
architecture (PON-RGB) and a modified PON
designed for handling four input channels (RGB-D)
data (PON-RGBD).

3.1 Effects on Perspective Transformation of
Classic and Layer-based Data
Augmentation

Training deep learning models for complex
problems is often affected by issues such as data
scarcity either because data is limited, expensive
or challenging to acquire. Acquiring ground
truth to train front-to-bird-eye view perspective
transformation algorithms is both a complicated
and impractical task. Data augmentation is
widely recognized as an effective technique to
prevent model overfitting and overall improve
generalization performance.

Table 1. Model performance using data augmentation.
Mean intersection over union (mIoU) scores (non aug:
Non-augmented dataset, aug cl: Classic data
augmentation, LbDA: Layer-based data augmentation)
* Previous work results on smaller and less complex
dataset

Augmentation
Model non aug aug cl LbDA

VED-RGB* [13] 0.5691 0.6330 0.6356
PON-RGB* [13] 0.6051 0.6487 0.6586

VED-RGB 0.2997 0.4145 0.4104
PON-RGB 0.2683 0.3297 0.3926

In this experiment, we analyze the effects of
data augmentation on front to BEV perspective
transformation models by contrasting classic
methods against our reported layer-based data
augmentation [13] (LbDA).

The LbDA method aims to improve semantic
segmentation and perspective transform
performance by augmenting map layers, as
objects present or absent from the original scenes
could improve the model’s understanding of the
driving environment. To assess the effectiveness
of the LbDA technique, three distinct training
approaches were utilized. The first, referred to as
the ”Non-augmented” method, used the original
nine scenes with the traffic layer configuration.
The second approach, known as the ”classic”
method, included traditional data augmentation
techniques like Gaussian blur and vertical flipping
within the traffic layer configuration. Finally, the
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third approach involved the LbDA method, which
applied the “layers-none”, “layers-all”, and “traffic”
map layers as defined in Section 2.2.

Note that the classic and layer-based augmented
datasets had three times more training samples.

In Table 1, two sets of results are shown. In
contrast to our previous work [13], it is noteworthy
that we have significantly augmented the dataset
for this current work. This extension integrated
more elaborated scenes including pedestrian
crowds and more vehicles, which increased the
the variability of the perspective transformation
dataset, and therefore, its complexity.

Table 2. Sensor fusion performance (mIoU). Best
performing model result is in bold. Best augmentation
approach for each trained model is underlined
(non aug: Non-augmented dataset, aug cl: Classic data
augmentation, LbDA: Layer-based data augmentation)

Sensor Fusion
Model non aug aug cl LbDA

VED-RGB 0.2997 0.4145 0.4104
PON-RGB 0.2683 0.3297 0.3926

VED-RGBD 0.4295 0.4032 0.4324
PON-RGBD 0.3843 0.3902 0.4733
VED-Fusion 0.4602 0.3761 0.4921

Nonetheless, classic and LbDA data
augmentation approaches exhibit substantial
improvements in mIoU metrics compared to the
non-augmented approach, regardless of the
model used. In particular, the Classic and LbDA
models have improved around 11% for the VED
and up to 13% for the PON with respect to the
non-augmented approach. On the other hand, and
opposed to the previous results, the PON model
is more affected by the augmentation methods
than VED. In summary, augmentation methods
improved overall performance, classic exhibited
a slight improvement over the LbDA on VED.
However on PON, LbDA outperformed the classic
data augmentation approach, at least on the
validation split, composed of unseen scenes from
the same map during the training process.

3.2 Effects on Perspective Transformation by
Adding Depth Information and Using
Fusion Block

To evaluate sensor fusion, three approaches were
contrasted. The first approach is the RGB
baseline, which does not include depth information.
Then, the second approach is the RGBD, for this
approach, the feature extraction backbone of the
implemented models is modified so it can take a
4-channel image as input (RGB+Depth). Finally,
in the third approach, the proposed VED-Fusion
model is evaluated.

As presented in Table 2, the models that
included depth information overall outperformed
the RGB models on the mIoU score. The VED
and PON models trained with the RGB-Depth
images (RGBD) improved from 11% and up to
13% on the non-augmented approach respectively.
Likewise, when trained with the data augmentation
methods, the performance also improved, reaching
up to 0.4733 mIoU for the PON model. Similar to
the data augmentation experiment, our proposed
LbDA method achieved better performance than
the classic data augmentation on all models, with
the exception of the VED model trained with the
RGB approach.

Furtermore, the proposed VED-Fusion model
achieved the best performance both in the non
augmented approach and among all the trained
models with data augmentation, achieving 0.4921
on the mIoU evaluation metric. Even though the
PON-RGBD model trained with the four channel
image feature extraction achieved the second
highest score, the baseline and average score of
the VED-Fusion model is higher, suggesting that
the proposed fusion module better exploits the
depth features, surpassing the performance of a
newer and more advanced model as the PON.

3.3 Generalization of the Models on
Unseen Scenarios

As mentioned in Section 2.4, a subset of 500
images from previously unseen scenarios were
utilized to assess the models’ generalization
capabilities. These novel scenarios present
increased complexity, requiring the models
to predict perspective transformations based
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Table 3. Performance results of all models in the
generalization test. Best performing model is bolded.
Best augmentation approach for each trained model is
underlined (non aug: Non-augmented dataset, aug cl:
Classic data augmentation, LbDA: Layer-based data
augmentation)

Generalization test
Model non aug aug cl LbDA

VED-RGB 0.2173 0.2610 0.2782
PON-RGB 0.2576 0.2613 0.2805

VED-RGBD 0.2858 0.2855 0.2896
PON-RGBD 0.2643 0.2518 0.2771
VED-Fusion 0.2725 0.2399 0.3177

on images derived from entirely different
environments. The variations in lighting,
weather, and architectural conditions within
this new cities further compound the challenges,
posing significant difficulties for accurate model
predictions.

Tests have been conducted using the trained
models on the color images (VED-RGB and
PON-RGB), the four-channel feature extraction for
depth integration (VED-RGBD and PON-RGBD),
and the VED-Fusion, and under the three proposed
data augmentation techniques. Tests were
performed 30 times, and their mIoU metrics
recorded. In Table 3, the best mIoU scores are
shown. The 30 experimental runs were utilized to
perform a statistical analysis (see Section 3.3.1).

From the results shown in Table 3, it may be
observed that models trained using augmented
methods tend to perform better. Specifically, the
VED model performed slightly better, achieving
the highest scores in the three augmentation
methods (Non-augmented, Classic data
augmentation, layer-based data augmentation).
The implemented LbDA method performed better
than classic augmentation in all five trained
models, demonstrating that for this particular
depth integration approaches, the layer-based
data augmentation could help to further improve
perspective transformation performance.

Moreover, the highest scores were also
achieved by the models that were trained
with depth information (between RGBD and

Table 4. Mean and standard deviation of all models
in the generalization test. Best performing models
are bolded (non aug: Non-augmented dataset, aug cl:
Classic data augmentation, LbDA: Layer-based data
augmentation)

Generalization test statistics
Model non aug aug cl LbDA

VED-RGB 0.2069
(±0.004)

0.2485
(±0.004)

0.2705
(±0.003)

PON-RGB 0.2455
(±0.004)

0.2541
(±0.004)

0.2726
(±0.005)

VED-RGBD 0.2733
(±0.005)

0.2762
(±0.004)

0.2796
(±0.005)

PON-RGBD 0.2572
(±0.003)

0.2443
(±0.004)

0.2641
(±0.005)

VED-Fusion 0.2623
(±0.004)

0.2308
(±0.004)

0.3071
(±0.006)

VED-Fusion), suggesting that including depth
information substantially improves the perspective
transformation and semantic segmentation
performance.

Furthermore, the proposed fusion module
outperformed the four-channel (RGB-Depth)
feature extraction models, suggesting as well that
encoding color and depth features and fusing them
after is a better approach than including depth
information as an additional image channel.

3.3.1 Statistical Analysis

To support the discussion of the results, a statistical
analysis was conducted. Table 4 presents the
mean and standard deviation of the experimental
results. These statistical measures provide a
clear summary of the data, where the mean
represents the average performance across trials,
and the standard deviation indicates the variability
or consistency of the results.

The statistics obtained from the 30 experimental
runs for each model show that the variability
(standard deviation) on the mIoU metric has a
maximum value of ±0.006 among all models,
which supports that there is statistically significant
difference between the models, as well as in the
augmentation approaches.
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4 Conclusion and Future Work

This study overviews a representation learning
technique used in autonomous vehicles to
convert front-view perspectives into bird’s-eye
view representations. We implemented and
compared two state of the art deep learning
architectures, the variational encoder-decoder
(VED) and the pyramid occupancy network (PON)
to explore the effects of data augmentation
and sensor fusion (RGB and depth images) on
perspective transformation performance. To test
the perspective transformation we have extended
our synthetic dataset by adding more maps,
scenes, and depth information. We demonstrate
that our proposed layer-based data augmentation
method improves the perspective transformation
performance on the implemented architectures.

Furthermore, we propose a sensor fusion
block to enhance the VED architecture. The
conducted experiments demonstrated that the
proposed VED-Fusion architecture the most
robust generalization capability among all the
implemented and tested model, concluding that
both utilizing our proposed layer-based data
augmentation method and fusing front RGB
and depth features improve the perspective
transformation performance.

In future work, we plan to incorporate LiDAR’s
point cloud features and further improve our data
augmentation technique, additionally we propose
to explore estimating the distance between the ego
vehicle and the objects of interest, also we plan to
test our methodology on real-world data to further
evaluate its efficiency.
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